75 research outputs found

    Predicting lubrication performance between the slipper and swashplate in axial piston hydraulic machines

    Get PDF
    Engineering of the sliding interfaces within swashplate type axial piston machines represents the most complex and difficult part of the design process. The sliding interfaces are subject to significant normal loads which must be supported while simultaneously preventing component wear to ensure long lasting operation. Proper lubrication design is essential to separate the solid bodies from each other, but the complexity of the physics involved makes this a difficult problem. This work focuses on lubrication and the resulting energy losses at the sliding interface between the slipper and swashplate. ^ To better understand the slipper lubrication performance, a numerical model has been developed to predict the behavior of a design. The numerical model considers the multi-physics, multi-scale, and transient nature of the lubrication problem by utilizing novel segmented physics solvers and numerical techniques. Partitioned solvers considering the fluid pressure and temperature distributions, structural deformation due to fluid pressure and viscous heating, as well as a solid body dynamics from transient loads have been originally developed and tightly coupled. Although the effort necessary to implement this was significant, by avoiding a more traditional co-simulation approach, high computational efficiency and model fidelity can be achieved. ^ To validate the developed numerical model, a specialized test rig was designed and manufactured. Miniature high-speed inductive position sensors were mounted inside the swashplate of a commercially manufactured pump with only minimal modifications. These six sensors measured the distance between the sensor face and the slipper land as the slipper passed over the sensor, effectively measuring the direct film thickness in real time. The thickness of lubrication represents the greatest unknown predicted by the model and provides the most rigorous validation as well as experimental insight into actual slipper operation. New slippers were installed in the test rig, measured, and then following a period of operation, were measured again. A significant change in film thickness behavior was measured due to the presence of a worn slipper surface during the second period of testing, and this same behavioral change was captured with the simulation model. ^ The developed numerical model was used to conduct case studies demonstrating the potential of virtual pump lubrication design. Slipper sensitivity to operating conditions and materials were explored. Operational changes such as slipper tipping and liftoff at high speeds were numerically observed and would serve to aid a designer in improving the robustness of a design. A multi-modeling approach using a surrogate model based upon a design of experiment study and the full numerical model explored the inter-dependence of variables in a multi-land slipper design. In particular, a decrease in total power loss while increasing the outer stabilizing land width at a constant hydrostatic balance factor was observed for low pressure operatio

    Structure, function, and evolution of metallo-β-lactamases from the B3 subgroup—emerging targets to combat antibiotic resistance

    Get PDF
    β-Lactams are the most widely employed antibiotics in clinical settings due to their broad efficacy and low toxicity. However, since their first use in the 1940s, resistance to β-lactams has proliferated to the point where multi-drug resistant organisms are now one of the greatest threats to global human health. Many bacteria use β-lactamases to inactivate this class of antibiotics via hydrolysis. Although nucleophilic serine-β-lactamases have long been clinically important, most broad-spectrum β-lactamases employ one or two metal ions (likely Zn2+) in catalysis. To date, potent and clinically useful inhibitors of these metallo-β-lactamases (MBLs) have not been available, exacerbating their negative impact on healthcare. MBLs are categorised into three subgroups: B1, B2, and B3 MBLs, depending on their sequence similarities, active site structures, interactions with metal ions, and substrate preferences. The majority of MBLs associated with the spread of antibiotic resistance belong to the B1 subgroup. Most characterized B3 MBLs have been discovered in environmental bacteria, but they are increasingly identified in clinical samples. B3-type MBLs display greater diversity in their active sites than other MBLs. Furthermore, at least one of the known B3-type MBLs is inhibited by the serine-β-lactamase inhibitor clavulanic acid, an observation that may promote the design of derivatives active against a broader range of MBLs. In this Mini Review, recent advances in structure-function relationships of B3-type MBLs will be discussed, with a view to inspiring inhibitor development to combat the growing spread of β-lactam resistance

    Switching the stereochemical outcome of 6-endo-trig cyclizations; Synthesis of 2,6-Cis-6-substituted 4-oxopipecolic acids

    Get PDF
    A base-mediated 6-endo-trig cyclization of readily accessible enone-derived α-amino acids has been developed for the direct synthesis of novel 2,6-cis-6- substituted-4-oxo-L-pipecolic acids. A range of aliphatic and aryl side chains were tolerated by this mild procedure to give the target compounds in good overall yields. Molecular modeling of the 6-endo-trig cyclization allowed some insight as to how these compounds were formed, with the enolate intermediate generated via an equilibrium process, followed by irreversible tautomerization/neutralization providing the driving force for product formation. Stereoselective reduction and deprotection of the resulting 2,6-cis-6-substituted 4-oxo-L-pipecolic acids to the corresponding 4-hydroxy-L-pipecolic acids was also performed

    A Televised, Web-Based Randomised Trial of an Herbal Remedy (Valerian) for Insomnia

    Get PDF
    BACKGROUND: This trial was conducted as part of a project that aims to enhance public understanding and use of research in decisions about healthcare by enabling viewers to participate in research and to follow the process, through television reports and on the web. Valerian is an herbal over-the-counter drug that is widely used for insomnia. Systematic reviews have found inconsistent and inconclusive results about its effects. METHODS: Participants were recruited through a weekly nationally televised health program in Norway. Enrolment and data collection were over the Internet. 405 participants who were 18 to 75 years old and had insomnia completed a two week diary-keeping run-in period without treatment and were randomised and mailed valerian or placebo tablets for two weeks. All participants and investigators were blind to treatment until after the analysis was completed. FINDINGS: For the primary outcome of a minimally important improvement in self-reported sleep quality (> or = 0.5 units on a 7 point scale), the difference between the valerian group (29%) and the placebo group (21%) was not statistically significant (difference 7.5%; 95% CI-0.9 to 15.9; p = 0.08). On the global self-assessment question at the end of the treatment period 5.5% (95% CI 0.2 to 10.8) more participants in the valerian group perceived their sleep as better or much better (p = 0.04). There were similar trends favouring the valerian group for night awakenings (difference = 6.0%, 95% CI-0.5 to 12.5) and sleep duration (difference = 7.5%, 95% CI-1.0 to 16.1). There were no serious adverse events and no important or statistically significant differences in minor adverse events. INTERPRETATION: Based on this and previous studies, valerian appears to be safe, but with modest beneficial effects at most on insomnia compared to placebo. The combined use of television and the Internet in randomised trials offers opportunities to answer questions about the effects of health care interventions and to improve public understanding and use of randomised trials. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN72748991

    When Do Objects Become Landmarks? A VR Study of the Effect of Task Relevance on Spatial Memory

    Get PDF
    We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants’ attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects’ locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral “object processing stream”, but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory

    Differential Expression of Chemokine and Matrix Re-Modelling Genes Is Associated with Contrasting Schistosome-Induced Hepatopathology in Murine Models

    Get PDF
    The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants

    Neptune Odyssey: A Flagship Concept for the Exploration of the Neptune–Triton System

    Get PDF
    The Neptune Odyssey mission concept is a Flagship-class orbiter and atmospheric probe to the Neptune-Triton system. This bold mission of exploration would orbit an ice-giant planet to study the planet, its rings, small satellites, space environment, and the planet-sized moon Triton. Triton is a captured dwarf planet from the Kuiper Belt, twin of Pluto, and likely ocean world. Odyssey addresses Neptune system-level science, with equal priorities placed on Neptune, its rings, moons, space environment, and Triton. Between Uranus and Neptune, the latter is unique in providing simultaneous access to both an ice giant and a Kuiper Belt dwarf planet. The spacecraft - in a class equivalent to the NASA/ESA/ASI Cassini spacecraft - would launch by 2031 on a Space Launch System or equivalent launch vehicle and utilize a Jupiter gravity assist for a 12 yr cruise to Neptune and a 4 yr prime orbital mission; alternatively a launch after 2031 would have a 16 yr direct-to-Neptune cruise phase. Our solution provides annual launch opportunities and allows for an easy upgrade to the shorter (12 yr) cruise. Odyssey would orbit Neptune retrograde (prograde with respect to Triton), using the moon's gravity to shape the orbital tour and allow coverage of Triton, Neptune, and the space environment. The atmospheric entry probe would descend in ~37 minutes to the 10 bar pressure level in Neptune's atmosphere just before Odyssey's orbit-insertion engine burn. Odyssey's mission would end by conducting a Cassini-like "Grand Finale,"passing inside the rings and ultimately taking a final great plunge into Neptune's atmosphere
    corecore